Natural Resources

Dealing with Storm Damaged Trees

By Tom Worthley, UConn Extension

 

tree down across road in Brookfield, Connecticut on May 15, 2018
Tree down in Brookfield, Connecticut on May 15, 2018. Photo: Jeremy Petro

On May 15, 2018, late in the afternoon, a striking example of one of those “severe weather events” we see quite often these days passed through my neighborhood in Higganum. Severe winds, downpours, lightning and thunder all were part of a wicked and deadly storm that ripped limbs from and uprooted trees, downed powerlines and damaged buildings and vehicles in other parts of the state. Images on TV news and social media of damage and cleanup efforts have been striking.

For my part, because of the sudden and severe nature of the winds, and the near-continuous display of lightning, I was as nervous I ever remember being about a storm event and the potential for damage to my humble little house from trees and limbs. Sure enough, one large limb, from the top of a large red oak, did get ripped off and came down about 20 feet from where I park my car. There is, of course, a mess of smaller twigs and branches as well. No real property damage, thank goodness, but it was close. The storm was over a quick as it began, and now, just like many folks around the state, I’m faced with a clean-up task. It’s not a real problem for me; that broken limb is at the edge of the woods and will make a nice neat little pile of firewood.

For many people, however, the task of cleaning up storm-damaged trees is not so straightforward and simple. Many damaged trees are huge and are left in precarious, unstable positions. Storm-damaged trees are fraught with abundant problems, dangers, and risks. Cutting, cleaning up and salvaging downed, partially down or damaged trees is one of the most dangerous and risky activities an individual can undertake.

In viewing the news reports, photos and social media posts I have been shocked and horrified by the personal risks that people are taking to cut up downed trees in cleanup efforts. Pictures of men operating chain saws in shorts and t-shirts, climbing downed tree limbs (and standing on them!) to cut them, working with no personal protective equipment, etc. – it can all be quite distressing for a person familiar with the potential danger. No professional arborist or logger I know does chain saw work without personal protective equipment – and these are the experts!

It cannot be emphasized enough that without personal skill and a thorough knowledge of equipment capabilities, safety procedures and methods for dealing with physically stressed trees, an individual should never undertake this type of work on their own. The very characteristics that make the wood from trees a great structural material can turn leaning, hanging or down trees into dangerous “booby-traps” that spring, snap, and move in mysterious ways when people try to cut them. They can cause serious and life threatening injuries. Just because your neighbor or relative owns a chain saw, it doesn’t make them qualified to tackle a large tree that is uprooted or broken. Contacting a Licensed Arborist, or Certified Forest Practitioner with the right equipment, training, and insurance, is the best alternative for addressing the cleanup and salvage of storm damaged trees, and avoiding potential injury, death, liability and financial loss.

That said, there are a few things a homeowner can do about trees that are damaged and/or causing other damage around a home site:

  • First, from a safe distance note the location of any and all downed utility lines. Always assume that downed wires are charged and do not approach them. Notify the utility company of the situation and do nothing further until they have cleared the area.
  • Don’t forget to LOOK UP! While you may be fascinated with examining a downed limb, there may be another one hanging up above by a splinter, ready to drop at any time.
  • Once you are confident that no electrocution or other physical danger exists, you can visually survey the scene and perhaps document it with written descriptions and photographs. This will be particularly helpful if a property insurance claim is to be filed. Proving auto or structure damage after a downed tree has been removed is easier if a photo record has been made.
  • Take steps to flag off the area or otherwise warn people that potential danger exists.
  • Remember that even if a downed tree or limb appears stable, it is subject to many unnatural stresses and tensions. If you are not familiar with these conditions, do not attempt to cut the tree or limb yourself. Cutting even small branches can cause pieces to release tension by springing back, or cause weight and balance to shift unexpectedly with the potential for serious injury. Call a professional for assistance.
  • Under no circumstances, even in the least potentially dangerous situation, ever operate, or allow anyone on your property to operate a chainsaw without thorough knowledge of safe procedures and proper safety equipment, including, at the minimum, hardhat, leg chaps, eye and hearing protection, steel-toe boots and gloves.

An assessment of the damage to individual trees, or more widespread damage in a forest setting is best undertaken by an individual with professional expertise. Homeowners should contact an Arborist to examine trees in yards or near to structures, roads or power lines. A Certified Forester is qualified to evaluate damage in the forest to trees and stands and advise landowners about the suitability of salvage or cleanup operations. The CT-DEEP Forestry Division can provide information about contacting a Certified Forester or Licensed Arborist. Check the DEEP Website, http://www.ct.gov/deep/cwp/view.asp?a=2697&q=322792&deepNav_GID=1631%20

or call 860-424-3630. Listings of Licensed Arborists can also be found at the CT Tree Protective Association web site, www.CTPA.org.

While a nice tidy pile of firewood from a tree that was damaged in a storm might be the silver lining, it is not worth the risk of injury to yourself or someone else when tackling a very dangerous task without the proper knowledge, equipment or preparation.

Can I Water Vegetables with my Rain Barrel Water?

By Joan Allen

Originally published by the UConn Home & Garden Education Center

rain barrel against side of house in with shrubs
Photo credit: CT DEEP

Collection of rain water from roofs using rain barrels is growing in popularity because of its many environmental and practical benefits. It can help the environment by diverting water that might contain contaminants away from storm drains and the natural bodies of water that those empty into.  Depletion of well water can be a benefit when this non-potable water is used instead of the tap for things like washing cars, irrigation of plants, and flushing toilets. If you’re on a city/public water system, it can save money to use rain water where you can, too. But is using rain water to irrigate vegetables and fruits safe? Are there contaminants in it that could make people sick? Let’s take a look at what’s been studied.

A few universities in the U.S and abroad have done some work to look at potential contaminants in roof run-off water including heavy metals like zinc, copper, lead and others as well as bacteria such as E. coli and other pathogens. Testing done so far has shown low risk from these, but there is some. And of course, it depends on the type of roofing material, the environment (ie acid rain, urban vs. rural, etc) and possibly other factors. In one study, most of the metals tested the same in rain barrel water as in rain water before it hit the roofs, so little to no concern there. One exception was zinc, and elevated levels could lead to build up of this element in soils. At high enough levels, this can cause injury to plants and those plants should not be consumed (1). Monitor for this by having the soil tested.

While risk appears to be low, there were a few samples in studies (1, 2) where E. coli or total coliform bacterial levels exceeded official standards for some uses. Rain barrel water should NEVER be used for potable purposes such as drinking water, cooking or washing. Where do the bacteria in run-off come from? The main sources would be fecal matter from animals such as squirrels and birds that land and move around on the roof.

But if you’d like to water your vegetable garden with rain barrel water, are there ways to do it safely?

Dr. Mike Dietz, Assistant Extension Educator at UConn with expertise in water management recommends “not using roof water on anything leafy that you are going to eat directly. It would be OK to water soil/plants where there is no direct contact”. This is consistent with recommendations from other experts who suggest applying the water directly to the soil and avoiding contact with above-ground plant parts. An ideal set-up would be to hook up a drip irrigation system to your rain barrel(s). Pressure will be improved when they are full and if they are elevated. A full rain barrel can be pretty heavy, at about 500 lbs. for a 55 gallon unit, so make sure they are on a solid and stable base such as concrete blocks.

If possible, and this is done in larger collection systems automatically, don’t collect the ‘first flush’ of water off the roof. This would be the first few gallons. In a ¼” rainfall as much as 150 gallons can be collected from a 1000 ft2 roof surface (3). The first water to run off tends to have higher concentrations of any contaminants because of them building up on the roof since the previous rainfall event.

Another more practical way to minimize risk of pathogen/bacterial contamination is to treat the collected water with bleach. Rutgers University recommends treating 55 gallons of water by adding one ounce of unscented household chlorine bleach to the barrel once a month (or more often if rain is frequent). Allow this to stand for 24 hours before using the water for irrigation so the bleach can dissipate.

Apply collected water in the morning. Wait until leaves dry in the sun before harvesting. Ultraviolet light from the sun will have some disinfecting effect.

It is recommended to have the rain barrel water tested for E. coli. Be sure to follow the testing lab’s instructions for collection, storage and time sensitivity of the samples.

Thoroughly wash all harvested produce. In addition, you should always thoroughly wash your hands with warm, soapy water after they are in contact with collected water.

In summary, there are risks to using collected rain water for irrigation of food crops. In most cases, the risk appears to be low, and using the above sanitation practices can reduce risk.

References:

  1. DeBusk, K., W. Hunt, D. Osmond and G. Cope. 2009. Water quality of rooftop runoff: implications for residential water harvesting systems. North Carolina State University Cooperative Extension.
  2. Bakacs, M., M. Haberland and S. Yergeau. 2017. Rain barrels part IV: testing and applying harvested water to irrigate a vegetable garden. Rutgers New Jersey Agricultural Experiment Station. Fact Sheet FS1218.
  3. Rainfall as a resource. A resident’s guide to rain barrels in Connecticut. CT DEEP.

Another Win for Rain Gardens

By Amanda Ryan

Originally published by the Center for Land Use Education and Research

aerial image of retention pond in residential neighborhood
Image of retention pond from Activerain.com

It’s well known that rain gardens are great for infiltrating stormwater but people may not realize that they also help destroy common stormwater pollutants. Several studies have found that rather than accumulating pollutants in their soils, rain gardens tend to biodegrade them instead. One study (LeFevre et al., 2011) investigated petroleum hydrocarbon levels in 58 rain gardens in Minneapolis, MN representing a wide range of sizes, vegetation types, and contributing area land uses. The researchers found that petroleum hydrocarbon levels were well below regulatory limits in all the rain gardens sampled. And a tip for future rain garden installers, rain gardens planted with more robust vegetation with deeper roots did a better job at breaking down pollutants than those planted with only turf grass.

A rain garden’s ability to biodegrade pollutants is in contrast to what happens in more conventional stormwater management structures like retention ponds. Retention ponds are often installed with larger developments to receive a large volume of stormwater from impervious areas (ex. houses and roads in a subdivision, roof and parking lot of a Home Depot). Other studies (Van Metre et al., 2009; Van Metre et al., 2000; Kamalakkannan et al., 2004), found that pollutants like PAH’s (polycyclic aromatic hydrocarbons), a type of petroleum hydrocarbon, accumulate in the sediments of stormwater retention ponds. This creates a very expensive maintenance issue for retention pond owners when the time comes to remove and dispose of built up contaminated sediments.

Side note – stormwater can pick up PAHs from dust on pavements treated with coal tar  sealants which are commonly used on parking lots, driveways, and playgrounds (but they have recently been banned from use on State and local highways in CT).

If by now you’re energized to install one or many rain gardens on your property, check out NEMO’s  rain garden site and Rain Garden App!

What Do You Do After You Scoop?

By David Dickson

Originally published by the UConn Center for Land Use Education and Research

cartoon of lady and dog scooping poop and not placing it in stormwater drain
Image courtesy of Rhode Island Stormwater Solutions

On my drive home last week I saw two of my neighbors walking their dogs. One of the dogs had just done his business and the owner dutifully scooped it up with a doggy doodie bag dangling from the dog’s leash. Excellent, I thought, he knows that dog poop left on the street can be carried by stormwater into our storm drain and then pollute our waterways with bacteria. As a water quality educator, I was pleased to see the “scoop the poop” message was getting out.

However, my neighbor then proceeded to drop the doodie bag directly into the storm drain! So, there is still work to do. Once you scoop it, you need dispose of it properly – either in the garbage or flushed down the toilet (minus the plastic bag). Not carry it directly to the storm drain.

This has gotten me to think more about how we educate the public about the impacts of common everyday activities on our lakes, streams and rivers. Under our new state stormwater management regulations (a.k.a, the MS4 permit) towns are required to educate their citizens on the impacts things like pet waste and fertilizer have on our waters when transported to our storm drain system. However, if towns are going to invest/spend their limited time and resources on public outreach, it makes sense that they ensure they are as effective as possible at conveying the whole message, while also keeping it simple.

CLEAR’s NEMO program is helping communities to identify ways to get these messages out. Our online MS4 Guide has examples of public outreach materials towns can use, but there are other resources as well. URI’s Stormwater Solutions program has some great public outreach materials on scooping and trashing pet waste, including cartoons like the one above. The EPA has a nice stormwater outreach”toolbox” with examples from around the country searchable by topic or media type.

Still, many of these focusing on the scooping, which at least in my neighborhood (and I’m guessing in yours) is only half the battle. So choose carefully.

Maybe someone will come up with a cute phrase that tells people what to do AFTER they scoop. “Scoop the poop and then place it in the proper receptacle” doesn’t exactly roll off the tongue.

Stormwater Research from Extension

stormwater running into a street drain

Our UConn Extension educators working in land use, and the environment have recently published two articles:

Extension Educators Mike Dietz and Chet Arnold have an article, Can Green Infrastructure Provide Both Water Quality and Flood Reduction Benefits?, in the May issue of the Journal of Sustainable Water in the Built Environment. You can read the article online at: http://s.uconn.edu/476

The UConn CLEAR NEMO team recently wrote an article on our State of LID in Connecticut study that was published in the Watershed Science Bulletin. The study looked at what is being required for stormwater management practices by Connecticut municipal land use plans and regulations. Much of the leg work for the study was carried out by our Extension intern a few years ago. The article can be read online at: http://s.uconn.edu/477.

New Rules for Corralling Runoff Require Local Actions

By JUDY BENSON

Haddam – As the state gets wetter, Connecticut cities and towns have little choice but to take better control of the water that flows over streets, parking lots and fields from rainfall and snowmelt.

“There are two drivers related to stormwater,” said David Dickson, faculty member of the UConn Center for Land Use Education and Research (CLEAR). “One is climate change. New England is seeing more rain and more intense rainfall events. The other is the MS4 general permit, which became effective in 2017.”

Dickson, speaking at a March 22 symposium sponsored by the UConn Climate Adaptation Academy, explained that MS4 — the shorthand term for the new state regulation for how municipal stormwater is managed — now requires cities and towns to reduce nonporous pavement on streets, sidewalks and parking lots. It also requires they establish “low impact development” practices as the standard for new construction. The state regulation is the result of a federal mandate under provisions of the Clean Water Act requiring gradually stricter rules to curb pollution.

“Towns have to enter into a retrofit program to reduce impervious surface areas by two percent by 2022,” Dickson said. “LID now has to be the standard for development. You can’t just say it’s too costly. This is going to change how we think about site development in this state.”

The third workshop in a series on the impacts of changing weather patterns on local land-use practices, the symposium drew about 50 municipal officials from around the state. It was presented at the Middlesex County Extension Center by the Climate Adaptation Academy, a partnership of CT Sea Grant, CLEAR and the UConn College of Agriculture, Health and Natural Resources. The Rockfall Foundation co-sponsored the event.

Overall, the purpose of the session was to educate local officials about “what works and what to watch out for to ensure success” when it comes to implementing low impact development, said Tony Marino, executive director of the Rockfall Foundation.

Dickson, the first of the four presenters, explained that with increasing amounts and intensity of precipitation, the impacts of unmanaged stormwater carrying road and agricultural pollutants into the environment are increasing.

“Stormwater is the top source of water pollution into Long Island Sound,” he said.

An illustration of a bioswale is shown during one of the presentations.
An illustration of a bioswale is shown during one of the presentations.

In the 1990s, low-impact development techniques emerged including “green roofs” covered with planted beds to absorb rainfall, grass swales to replace curbs and gutters, rain gardens and bio-retention areas with trees and shrubs situated to absorb runoff, and permeable pavement that allows water to infiltrate into the soil. That allows the soil to capture pollutants and groundwater to be recharged.

Since then, LID designs have been used at several sites on UConn’s main campus and in the Jordan Cove housing development in Waterford, among other locations around the state. While at least one-third of towns in Connecticut have adopted LID techniques at various levels, Dickson said, the new regulation means all towns will have to commit to making them the standard practice because it’s an economical and effective way to comply with the requirement to curtail stormwater runoff.

“Towns will have to start thinking about where impervious cover drains directly into their stormwater system, and enter into retrofit programs to reduce impervious areas,” he said.

Michael Dietz, water resources educator with CLEAR, said that more than 20 years after they were built, the LID features in the Jordan Cove development are still working. Research shows significantly less runoff coming from the portion of the development with LID compared to the control section built with traditional design features, he said. The LID structures continued to function even when the homeowners failed to maintain the areas correctly, he noted.

“The take-home message is that LID mostly still works, in spite of what people do,” he said.

At the main UConn campus, Dietz said, LID has “become part of the fabric of the design” for all new construction since it was first used in the early 2000s. But over those years, there have been mistakes and lessons learned, he added. In one case, curbs were installed where they weren’t supposed to be so runoff ended up being directed away from a bio-retention area. In another case, the bio-retention area was poorly located on the way students took to a dining hall, creating a compacted path that reduced its effectiveness.

“We failed to factor in people,” Dietz said.

The area, he said, was redesigned with a footpath through the middle that still allowed for runoff capture.

Some of the 50 municipal officials who attended the UConn Climate Adaptation Academy about low impact development listen during one of the presentations.
Some of the 50 municipal officials who attended the UConn Climate Adaptation Academy about low impact development listen during one of the presentations.

In another example, a parking lot next to the field house covered with permeable concrete “totally failed” last year and was allowing for “zero infiltration.” The concrete was not mixed and handled properly, he said, and curing time was insufficient, among other problems. It has been replaced with pre-cast pervious concrete blocks. Other challenges include the need for regular cleaning of pervious pavement to unclog porous spaces.

“You neglect it, it costs you down the road,” Dietz said.

Giovanni Zinn, city engineer for New Haven, said the dozens of bio-retention areas, rain gardens, swales and pervious pavement areas installed around the city do require more planning and attention.

“But if you simplify your designs, the construction will be less costly and they’ll be easier to maintain,” he said. Overall, he added, maintenance costs are less costly than for traditional infrastructure.

He advised choosing low-maintenance plantings and involving local residents and community groups in the projects. Looking ahead, New Haven is planning to build 200 more planted swales to capture runoff in the downtown area and another 75 in other parts of town.

“The bio-swales are the first step in dealing with our flash flooding issues in the downtown,” he said.

David Sousa, the final speaker, is a senior planner and landscape architect with CDM Smith, which has its headquarters in Boston and an office in East Hartford. Instead of talking about development practices to minimize runoff, Sousa focused on “how to avoid it altogether.”

He advocated for compact urban redevelopment over “big box” stores with large parking lots. Not only does this give residents stores and restaurants they can get to on foot, by bicycle or mass transportation, “it also saves acres of green fields.”

“It’s being done in our communities,” he said, citing examples in Mansfield, Stamford and Middletown. “But it’s not being done enough.”

Redevelopment of urban areas, he said, creates communities that use fewer resources, which in turn is better for the environment.

“The carbon footprint of people in cities is so much less than those with suburban lifestyles,” he said. “With less vehicle miles traveled, there is less need for impervious parking surfaces, less stormwater flooding and less emissions. We need to think about ways to avoid using LID in the first place.”

Judy Benson is the communications coordinator at Connecticut Sea Grant. She can be reached at:judy.benson@uconn.edu

Worthley Recognized for Forestry Efforts

Extension educator Tom Worthley received the Ernest M. Gould Jr. Technology Transfer Award today from the New England Society of American Foresters in Nashua, New Hampshire. With Tom are members of the Department of Natural Resources & the Environment: Senior Nick Vertefeuille, Asst. Prof. Bob Fahey, Tom, and PhD candidates Nancy Marek and Danielle Kloster. In the back are Research Technician Amanda Bunce and MS candidate Julia Rogers.Tom Worthley with colleagues receiving award Tom Worthley award recognition

Extension educator Tom Worthley received the Ernest M. Gould Jr. Technology Transfer Award today from the New England Society of American Foresters in Nashua, New Hampshire. With Tom are members of the Department of Natural Resources & the Environment: Senior Nick Vertefeuille, Asst. Prof. Bob Fahey, Tom, and PhD candidates Nancy Marek and Danielle Kloster. In the back are Research Technician Amanda Bunce and MS candidate Julia Rogers.

Install a Rain Garden This Spring

rain garden appWhat is a Rain Garden?

A rain garden is a depression (about 6 inches deep) that collects stormwater runoff from a roof, driveway or yard and allows it to infiltrate into the ground. Rain gardens are typically planted with shrubs and perennials (natives are ideal), and can be colorful, landscaped areas in your yard.

Why a Rain Garden?

Every time it rains, water runs off impervious surfaces such as roofs, driveways, roads and parking lots, collecting pollutants along the way. This runoff has been cited by the United States Environmental Protection Agency as a major source of pollution to our nation’s waterways. By building a rain garden at your home, you can reduce the amount of pollutants that leave your yard and enter nearby lakes, streams and ponds.

Learn more, and use our app or resources to install a rain garden on your property.

CT Trails Symposium

Naugatuck Greenway
Naugatuck Greenway

UConn Extension educators Laura Brown, Kristina Kelly, and Emily Wilson are presenting at the CT Trails Symposium on Thursday, October 19th. The CT Greenways Council, in partnership with Goodwin College, encourages you to engage in conversation about why and how to put your local trail systems to work for your community. Speakers and panels will use local examples to illustrate the demand for and benefits of local trails and how your community can sustain a world class trail system. Registration is only $25 and includes lunch. The full agenda is available online.

 

My 2017 Climate Corps Summer Internship

By Nikki Pirtel

Bruce and students
Student teams led by Bruce Hyde and other CLEAR faculty will work with Connecticut towns as part of the UConn Climate Corps.

The shoreline community of Westbrook, Connecticut, situated halfway between New Haven and New London, is home to approximately 7,000 residents while supporting seasonal tourists with numerous beaches and shopping stores in the town’s outlet. It is also the municipality I was assigned to research and create a vulnerability assessment for during my time at the UConn Extension Office Internship in partnership with the Climate Adaption Academy and Climate Corps. Through the internship I achieved the Extension Office’s mission of using scientific research to engage with members of the public and municipalities, breaking down complex problems and developing easy to understand solutions that may help inform policy in the future.

Using the town’s Natural Hazard Mitigation Plan and various mapping services, I compiled a list of assets that I determined to have some level of vulnerability to climate hazards (such as flooding, sea level rise, damage from high precipitation events) primarily based on their geographical location to bodies of water. Although this information was similar to that described in the town’s plan, my created final product takes the basic material and provides recommended actions to reduce vulnerability, thus going one step further. With my help and the aid of future interns, the municipality can prepare for the impacts already being seen from climate change while simultaneously saving money. Figuring out the best way to protect assets and people within communities, whether proposing solutions on a town wide or specific infrastructure basis (an approach this internship takes with the Climate Corps Information Sheet), is an important discussion to have and comparison to make. Creating the vulnerability assessment was a rewarding process and the completed 38-page document (including references and figures) is something that I am proud to show to anyone willing to learn about the risk-based evaluations. I hope that the work done in this internship will grow into a much more substantial program and help Connecticut become a leader in climate adaptation.

Additional internship responsibilities included website updating and offering recommendations for a role-playing exercise that will occur in a new Climate Corps related class during the upcoming semester. These activities helped me reflect on past, similar experiences so that I could make any changes to proposed material to avoid previous problems I had encountered. Finding links to put on the Adapt CT website (through UConn’s Center for Land Use Education and Research) helped bring out my creative side and allowed me to delve into topics that really interest me.

Although attending meetings (except with the Westbrook town planner) and conducting a field site visit were not a part of my official obligations, seeing people and infrastructure in person really tied everything in the internship together. By seeing the people, along with their properties and other assets, that will be most negatively impacted by climate change in the future, my work felt much more important knowing what I did this summer may have a positive influence in time. Talking to members of shoreline communities from various backgrounds also made me realize that the climate will leave people of all classes vulnerable to events such as sea level rise, storm surge, flooding and tropical storms/hurricanes. Overall, this was more than just a summer job, rather a learning experience teaching me the ins and outs of local government, how input from the public affects an administration’s policies and the importance of maintaining natural landscapes within man-made ones.